Ionic Liquid an Efficient Solvent and Catalyst for Synthesis of 1-aminoalkyl-2-naphthol and Naphthoxazine Derivatives

Authors

  • Navabeh Nami Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, I.R. IRAN
  • Sajedeh Zandieh Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, I.R. IRAN
  • Zinatossadat Hossaini Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, I.R. IRAN
Abstract:

The aim of doing this research is a one-pot three-component synthesis of 1-aminoalkyl-2- naphthol and naphthoxazine derivatives using the condensation of β-naphthol with various aldehydes and amines in the presence of ionic liquid {[(secondary butyl) methyl] imidazolium bromide} {[sec-bmim]+ Br-, as an efficient catalyst and solvent. The catalyst was prepared according to a previously published literature procedure using 1-methyl imidazole and 2-bromo butane. Furthermore, the catalyst could be recovered conveniently and reused. This protocol has proved to be efficient in terms of good to excellent yields, lower reaction times, mild reaction conditions, eco-friendly methodology, clean reaction profiles, and a simple work‐up procedure. The reactions carried out in 25˚C and mild reaction conditions without any need to high temperature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Polymer/HIO4 : An efficient catalyst for solvent-free synthesis of 2-naphthol azo dyes

A convenient, one-pot method for the synthesis of diazonium salt has been developed by the sequential diazotization of aromatic amines with NaNO2, polymer- supported periodic acid (PPIA) and 2-naphthole under solvent-free conditions at room temperature. By using this method, several types of aromatic amine, containing electron-withdrawing and electron-donating groups, were rapidly converted to ...

full text

Polymer/HIO4 : An efficient catalyst for solvent-free synthesis of 2-naphthol azo dyes

A convenient, one-pot method for the synthesis of diazonium salt has been developed by the sequential diazotization of aromatic amines with NaNO2, polymer- supported periodic acid (PPIA) and 2-naphthole under solvent-free conditions at room temperature. By using this method, several types of aromatic amine, containing electron-withdrawing and electron-donating groups, were rapidly converted to ...

full text

Brønsted Acidic Ionic Liquid: An Efficient and Reusable Catalyst for the Multi-Component Synthesis of Dihydropyrimidinones under Solvent-Free Conditions

An efficient and convenient procedure for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones by condensation of 1,3-dicarbonyl compounds, Aromatic and aliphatic aldehydes, and urea or thiourea in the presence of catalytic amount of Brønsted acidic ionic liquid 3-methyl-1-sulfonic acid imidazolium chloride {[Msim]Cl} under thermal solvent-free conditions reacted easily to afford the co...

full text

Bronsted Acidic Ionic Liquid: An Efficient and Reusable Catalyst for the Multi-Component Solvent-Free Synthesis of Dihydropyrimidinones

An efficient and convenient procedure for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones by condensation of 1,3-dicarbonyl compounds, Aromatic and aliphatic aldehydes, and urea or thiourea in the presence of catalytic amount of Brønsted acidic ionic liquid 3-methyl-1-sulfonic acid imidazolium chloride {[Msim]Cl} under thermal solvent-free conditions reacted easily to afford the co...

full text

Li(OHCH2CH2NH2)(CF3OAC): A novel and homogeneous acidic ionic liquid catalyst for efficient synthesis of 2-amino-4H-chromene derivatives

The ionic liquid Li(OHCH2CH2NH2)(CF3OAC) was found to efficiently catalyze the three-component reaction between different enols, aldehydes, and malononitrile , leading to rapid synthesis of 2-amino-4H-chromene derivatives in fairly high yields. The catalyst is easily prepared, highly stable, simple to handle and recycled for several times without significant loss of activity. The method is simp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 4

pages  27- 35

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023